Abstract

Preconditioners based upon transport sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D Sn transport equation using a strictly nonnegative nonlinear spatial closure. Linear and nonlinear preconditioners have been derived and analyzed. The effectiveness of various combinations of these preconditioners are compared using the source iteration, matrix-free Picard Krylov, and nonlinear Krylov acceleration methods. In one dimension, preconditioning with a linear S2SA diffusion equation is found to be essentially equivalent to using a nonlinear diffusion equation. The ability to use a linear diffusion equation has important implications for preconditioning the Sn equations with a strictly nonnegative spatial discretization in multiple dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.