Abstract
S100 calcium binding protein P (S100P) and miR-495 are aberrantly expressed and exert essential roles in cancers. However, the mechanisms of miR-495-S100P in pancreatic cancer are yet to be illustrated. Thus, we explored the regulatory functions of miR-495-S100P axis in pancreatic adenocarcinoma cells growth and invasion. In this study, we identified that S100P was upregulated in pancreatic adenocarcinoma by bioinformatics analysis of the GEO (Gene Expression Omnibus database) microarray dataset (GSE16515). Western blotting and luciferase reporter gene analysis exhibited that miR-495 negatively determined the level of S100P via binging to its 3'-untranslated regions (3'-UTRs). A series of functional experiments indicated that upregulation of miR-495 or S100P knockdown suppressed pancreatic adenocarcinoma cells proliferation, invasion, and promoted apoptosis. Furthermore, the expression of S100P was negatively associated with the level of miR-495 in The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma case-cohort. Besides, reintroduction of S100P debilitated the anti-cancer action of miR-495 in pancreatic adenocarcinoma cells. Our data indicated that miR-495 performed suppressive roles in pancreatic adenocarcinoma through targeting S100P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.