Abstract
Human S100A12 (calgranulin C, EN-RAGE) is a Zn(II)-sequestering host-defense protein that contributes to the metal-withholding innate immune response against microbial pathogens. S100A12 coordinates Zn(II) ions at two His3Asp sites with high affinity. A similar His3Asp site found in calprotectin (S100A8/S100A9, calgranulin A/B), a closely related human S100 protein, can sequester divalent metal ions from the solute-binding proteins (SBPs) pneumococcal PsaA (pneumococcal surface protein A) and staphylococcal MntC (manganese transport protein C). Both SBPs are components of Mn(II) transporters and capture extracellular Mn(II) ions for subsequent delivery into the bacterial cytosol. Nevertheless, PsaA and MntC exhibit a thermodynamic preference for Zn(II) over Mn(II), and Zn(II) binding can interfere with Mn(II) acquisition. In this work, we have used a biotinylated variant of S100A12 to show that S100A12 can sequester Zn(II) ions from PsaA and MntC. Moreover, electron paramagnetic resonance (EPR) spectroscopy indicates that by sequestering Zn(II) from Zn(II)-bound PsaA and MntC, S100A12 promotes Mn(II) binding to the SBPs. These results inform the function of S100A12 in Zn(II) sequestration, and further suggest that Zn(II)-sequestering S100 proteins may inadvertently protect bacterial pathogens during infection.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have