Abstract

Over the past decades, the application of single-photon emission computed tomography and positron emission tomography in neuroimaging has markedly increased. In the current study, we used a series of Korean computational head phantoms with detailed cranial structures for 6-, 9-, 12-, 15-y-old children and adult and a Monte Carlo transport code, MCNPX, to calculate age-dependent specific absorbed fraction (SAF) for mono-energetic electrons ranging from 0.01 to 4 MeV and S values for seven radionuclides widely used in nuclear medicine neuroimaging for the combination of ten source and target regions. Compared to the adult phantom, the 6-y phantom showed up to 1.7-fold greater SAF (cerebellum < cerebellum) and up to 1.4-fold greater S values (vitreous body < lens) for 123I. The electron SAF data, combined with our previous photon SAF data, will facilitate absorbed dose calculations for various cranial structures in patients undergoing neuroimaging procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call