Abstract

The establishment of heterojunctions was considered as an exceptional strategy to obtain high-efficiency charge separation and enhanced photocatalytic performance. Herein, a series of FePMo/MIL-53(Fe) (FeM-53) heterojunctions were successfully constructed through in-situ growth of FePMo onto MIL-53(Fe) surface and their photocatalytic capacity were examined by visible-light-induced Cr(VI) reduction. Interestingly, the as-fabricated composites offered various photocatalytic activities controllably relying on the mass ratio of FePMo to MIL-53(Fe). Particularly, the one with the 10% ratio displayed the highest Cr(VI) reduction rate (100%) within 75 min, which was respectively over 4 and 2 folds higher than pure FePMo and MIL-53(Fe). The boosted photoactivity might be ascribed to the establishment of S-scheme heterojunction with suitable band alignment between FePMo and MIL-53(Fe), which broadened the light absorption range and improved charge separation. Further mechanism investigations implied both •O2− and e− were the key reactive species for Cr(VI) removal. Besides, the composite preserved excellent stability after 4 consecutive tests, and performed well in the presence of organic dyes. Such a S-scheme heterojunction may promise for highly efficient environmental mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call