Abstract

Post-translational transformation of cysteine residues to persulfides, known as protein S-sulfhydration or persulfidation, is a beneficial H2S signaling mechanism. In this paper, we found that GSH is bound to active cysteine sites of protein by S-desulfurization, which is a new covalent modification mechanism of protein, thus regulating catalytic activity. Here, we provide direct evidence that GSH modifies the reactive cysteine residues of four enzymes (alliinase/D-LDH/ADH/G6PD) and generates protein-SG or protein-SSG derivatives by S-desulfurization. S-desulfurization, α-carbon nucleophilic substitution or thiol-disulfide exchange occurs and H2S is released as a by-product. S-desulfurization is the opposite of persulfidation in terms of H2S production/consumption and enzyme inhibition/mitigation. Here, we elucidated the GSH mechanisms and H2S mechanisms in the enzyme-metabolite system and the beneficial roles of persulfidation and S-desulfurization. These theoretical findings are now shedding light on understanding GSH and H2S molecular functions and providing new theoretical basis for them in cell signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call