Abstract

In this report we demonstrate that the immunosuppressive drug, rapamycin, can reversibly activate the skeletal muscle ryanodine receptor calcium release channel (RyR) in terminal cisternae vesicles incorporated into planar lipid bilayers. This reveals a second mechanism of activation of RyRs by rapamycin. Irreversible channel activation and openings to subconductance levels are seen when rapamycin forms a complex with and removes the tightly bound 12 kDa FK506-binding protein (FKBP12) from the RyR. We show here that micromolar rapamycin activates RyRs which were previously `stripped' of >95% of their FKBP12s. Rapamycin caused a 6-fold increase in mean current, which was largely reversible, but no increase in the fraction of openings to subconductance levels. Therefore native RyRs, stripped of FKBP12, are directly activated by the macrocyclic lactone, rapamycin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.