Abstract

Mesenchymal stem cells (MSCs) have multilineage differentiation potential and can transform into neuron cells under an appropriate environment. Retinoic acid (RA) facilitates the neuronal differentiation of MSCs. We found that RXRα, a RA receptor, was significantly upregulated in RA-induced process. Here, we show that RXRα collaborated with myocardin-related transcription factor-A (MRTF-A) to strongly promote the RA-induced process as evidenced by the increase in NF-H expression and NF-H promoter transcription activity. Our studies reveal that RXRα and MRTF-A exhibit protein interactions and synergistically inhibit the MSCs apoptosis by enhancing the P21 expression. Furthermore, RXRα and MRTF-A can activate P21 transcription by affecting the formation of the MRTF-A/RXRα/RARE complex. These findings reveal the important roles of RXRα and MRTF-A signaling in RA-induced neural-like differentiation of MSCs and describe a new mechanism underlying the synergistic interaction of RXRα and MRTF-A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call