Abstract
A water–dichloromethane interface-assisted hydrothermal method was employed to grow rutile TiO 2 nanowires (NWs) on electrospun anatase TiO 2 nanofibers (NFs), using highly reactive TiCl 4 as precursor. The water–dichloromethane interface inhibited the formation of rutile NWs in water phase, but promoted the selective radial growth of densely packed rutile NWs on anatase NFs to form a branched heterojunction. The density and length of rutile NWs could be readily controlled by varying reaction parameters. A formation mechanism for the branched heterojunction was proposed which involved (1) the entrapment of rutile precursor nanoparticles at water–dichloromethane interface, (2) the growth of rutile NWs on anatase NFs via Ostwald ripening through the scavengering of interface-entrapped rutile nanoparticles. The heterojunction formed at anatase NF and rutile NW enhanced the charge separation of both under ultraviolet excitation, as evidenced by photoluminescence and surface photovoltage spectra. The branched TiO 2 heterostructures showed higher photocatalytic activity in degradation of rodamine B dye solution than anatase NFs, and the mixture of anatase NFs, and P25 powders, which was discussed in terms of the synergistic effect of enhanced charge separation by anatase–rutile heterojunction, high activity of rutile NWs, and increased specific area of branched heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.