Abstract

The chemical composition of rutile has been used as an indicator in magmatic and metamorphic-related diagenetic systems, but rarely in porphyry-style ore systems. The Tuwu deposit (557 Mt at 0.58% Cu) is a large porphyry-style Cu mineralization in Eastern Tianshan, Xinjiang, with typical disseminated, stockwork mineralized veins hosted in tonalite and diorite porphyry, and to a lesser extent in volcanic rocks of the Qi’eshan Group. We first present determination of rutile minerals coupled with chlorite identified in mineralized porphyries from Tuwu to reveal their geochemical features, thus providing new insights into the ore-forming processes and metal exploration. Petrographic and BSE observations show that the rutile generally occurs as large crystals (30 to 80 µm), in association with hydrothermal quartz, chlorite, pyrite, and chalcopyrite. The rutile grains display V, Fe, and Sn enrichment and flat LREE-MREE patterns, indicating a hydrothermal origin. Titanium in rutile (TiO2) is suggested to be sourced from the breakdown and re-equilibration of primary magmatic biotite and Ti-magnetite, and substituted by Sn4+, high field strength elements (HFSE; e.g., Zr4+ and Hf4+), and minor Mo4+ under hydrothermal conditions. The extremely low Mo values (average 30 ppm) in rutile may be due to rutile formation postdating that of Mo sulfides (MoS2) formation in hydrothermal fluids. Chlorite analyses imply that the ore-forming fluids of the main stage were weakly oxidized (logfO2 = −28.5 to −22.1) and of intermediate temperatures (308 to 372 °C), consistent with previous fluid inclusion studies. In addition, Zr-in-rutile geothermometer yields overestimated temperatures (>430 °C) as excess Zr is incorporated into rutile, which is likely caused by fast crystal growth or post crystallization modification by F-Cl-bearing fluid. Thus, application of this geothermometer to magmatic-hydrothermal ore systems is questionable. Based on the comparison of rutile characteristics of porphyry Cu with other types of ore deposits and barren rocks, we suggest that porphyry Cu-related rutile typically has larger grain size, is enriched in V (average 3408 ppm, compared to <1500 ppm of barren rocks) and to a lesser extent in W and Sn (average 121 and 196 ppm, respectively), and has elevated Cr + V/Nb + Ta ratios. These distinctive signatures can be used as critical indicators of porphyry-style Cu mineralization and may serve as a valuable tool in mineral exploration.

Highlights

  • Rutile (TiO2 ) as an accessory mineral is widely distributed in igneous, metamorphic, and sedimentary rocks [1,2,3,4]

  • Rutilefrom in mineralized porphyries dark brownish-red or yellowish in color, varies subhedral to anhedral is in typically shape, and is brownish-red or 30 yellowish in color, varies(up fromtosubhedral to anhedral in shape, andoccurs is apapproximately to 60 μm in length

  • Rutile from the Tuwu porphyry Cu deposit mostly coexists with hydrothermal quartz, chlorite, pyrite, and chalcopyrite (Figure 3), and occurs as aggregates in mineralized porphyries (Figure 4)

Read more

Summary

Introduction

Rutile (TiO2 ) as an accessory mineral is widely distributed in igneous, metamorphic, and sedimentary rocks [1,2,3,4]. It is found in hydrothermal ore systems, such as porphyry. Rutile geochemistry has been determined and applied to magmatic and metamorphic-related diagenetic systems [2,4,16,17,18], but rarely to porphyry Cu systems [8,11,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call