Abstract

Ruthenium-catalyzed Heck olefination and Suzuki cross coupling reactions have been developed. When starting with a ruthenium complex [RuCl(2)(p-cymene)](2) as a homogeneous catalyst precursor, induction periods were observed and ruthenium colloids of zero oxidation state were generated under catalytic conditions. Isolated ruthenium colloids carried out the olefination, implying that active catalytic species are ruthenium nanoclusters. To support this hypothesis, ruthenium nanoparticles stabilized with dodecylamine were independently prepared via a hydride reduction procedure, and their catalytic activity was subsequently examined. Olefination of iodobenzene with ethyl acrylate was efficiently catalyzed by the ruthenium nanoparticles under the same conditions, which could be also reused for the next runs. In poisoning experiments, the conversion of the olefination was completely inhibited in the presence of mercury, thus supporting our assumption on the nature of catalytic species. No residual ruthenium was detected from the filtrate at the end of the reaction. On the basis of the postulation, a heterogeneous catalyst system of ruthenium supported on alumina was consequently developed for the Heck olefination and Suzuki cross coupling reactions for the first time. It turned out that substrate scope and selectivity were significantly improved with the external ligand-free catalyst even under milder reaction conditions when compared to results with the homogeneous precatalyst. It was also observed that the immobilized ruthenium catalyst was recovered and reused up to several runs with consistent efficiency. Especially in the Suzuki couplings, the reactions could be efficiently carried out with as low as 1 mol % of the supported catalyst over a wide range of substrates and were scaled up to a few grams without any practical problems, giving coupled products with high purity by a simple workup procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call