Abstract

In this study, Ru(0) nanoparticles supported in 2-hydroxyethyl starch-p-(2-Acrylamido-2-methyl-1-propanesulfonic acid) interpenetrating polymeric network (HES-p(AMPS) IPN) were synthesized as hydrogel networks containing hydroxyethyl starch, which is a natural polymer with oxygen donor atoms. The structure and morphology of the prepared HES-p(AMPS) IPN hydrogel and Ru@HES-p(AMPS) IPN catalyst were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). Ru@HES-p(AMPS) IPN was used as catalyst for hydrogen production from the hydrolysis of ethylenediamine bisborane (EDAB). The activation parameters for the hydrolysis reaction of EDAB catalyzed by Ru@HES-p(AMPS) IPN were calculated as Ea = 38.92 kJ mol−1, ΔH# = 36.28 kJ mol−1, and ΔS# = −111.85 J mol−1 K−1, respectively. The TOF for the Ru@HES-p(AMPS) IPN catalyst was 2.253 mol H2 (mol Ru(0) min)−1. It was determined that Ru@HES-p(AMPS) IPN, a reusable catalyst, still had 81.5% catalytic activity after the 5th use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call