Abstract
AbstractNovel catalysts consisting of ruthenium nanoparticles encapsulated in cross‐linked matrices based on the poly(propylene imine) dendrimers of the 1st and 3rd generations have been synthesized with a narrow particle size distribution (3.8 and 1.0 nm, respectively). The resulting materials showed high activity for the hydrogenation of phenols in aqueous media (specific catalytic activity reached turnover frequencies of 2975 h−1with respect to hydrogen uptake). It has been shown that the use of water as a solvent leads to a 1.5 to 50‐fold increase in the reaction rate depending upon the nature of the substrate. It has been established that unlike the traditional heterogeneous catalysts based on ruthenium, during the hydrogenation of dihydroxybenzenes, the hydrogenation rate decreases in the order: resorcinol>hydroquinone≫catechol. The maximum specific activity for resorcinol was a turnover frequency of 243150 h−1with respect to hydrogen uptake. The catalyst based on the dendrimer of the 3rd generation containing finer particles has significantly inferior activity to the catalyst based on the dendrimer of the 1st generation by virtue of steric factors, as well as the need for prereduction of the ruthenium oxide contained on the surface. These catalysts showed resistance to metal leaching and may be reused several times without loss of activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.