Abstract

Five ruthenium(II) complexes, [Ru(II)(tpy)(dppz)(py-R)](2+) (tpy = 2,2':6',2''-terpyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine; py-R = 4-substituted pyridine; R = N(CH(3))(2), NH(2), OCH(3), H, NO(2)), were synthesized; and the substituent effects on the photophysical property, electrochemical property, DNA binding, and DNA photocleavage of the complexes were examined carefully. Increasing the electron-donating ability of the substituent R from NO(2) to N(CH(3))(2) leads to a cathodic shift of Ru-based oxidation potential, a red shift of the (1)MLCT absorption at room temperature and the (3)MLCT emission at 77 K, and enhancement of the DNA photocleavage ability. DNA photocleavage control experiments and the EPR spin-trapping technique confirm that the photocleavage abilities of the complexes originate from (1)O(2) production. Time-resolved absorption spectra suggest that the (3)MLCT lifetime plays an important role in the photosensitized (1)O(2) generation of these complexes, which in turn depends strongly on the electron-donating ability of the substituent R. By changing the substituent of pyridine from the electron-withdrawing to the electron-donating group, the photocleavage abilities of the complexes varied from inactive to active, providing a new strategy for the development of DNA photocleavers of tpy-based Ru(II) complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.