Abstract

The combination of 2,2':6',2''-terpyridines (tpy) and RuII is known to deliver molecular and supramolecular assemblies with remarkable properties. Here new RuII complexes, with modified tpy ligands substituted with varying numbers of dimethlyamino groups, are presented. Electrochemistry shows that the incorporation of the strongly electron-donating groups on the tpy ligands leads to a negative shift of the RuII oxidation potential by close to 1 V. The reductive electrochemical responses are strongly dependent on the nature of the working electrode, with glassy carbon and gold working electrodes showing the best results. These observations led to the development of a modified Optically Transparent Thin Layer Electrochemical (OTTLE) cell, based on a gold working electrode. The use of UV/Vis/NIR spectroelectrochemical methods with that OTTLE cell, together with simulations of the cyclic voltammograms, allowed the characterization of four reduction steps in these complexes, the final two of which lead to bond activations at the ruthenium center. This observation is to the best of our knowledge unprecedented in coordinatively saturated complexes of type [Ru(tpy)2 ]2+ . The various redox states of the complexes were characterized by EPR spectroelectrochemistry and through DFT calculations. The results presented here establish these substituted tpy ligands as highly attractive ligands in coordination chemistry, and display the utility of a gold-based OTTLE cell for spectroelectrochemical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.