Abstract

AbstractThe catalytic properties of 1 wt % Ru catalysts with the same mean Ru cluster size of 1.4–1.5 nm supported on herringbone‐type carbon nanofibers with different N contents were compared for H2 production from formic acid decomposition. The Ru catalyst on the support with 6.8 wt % N gave a 1.5–2 times higher activity for the dehydrogenation reaction (CO2, H2) than the catalyst on the undoped support. The activity in the dehydration reaction (CO, H2O) was the same. As a result, the selectivity to H2 increased significantly from 83 to 92 % with N‐doping, and the activation energies for both reactions were close (55–58 kJ mol−1). The improvement could be explained by the presence of Ru clusters stabilized by pyridinic N located on the open edges of the external surface of the carbon nanofibers. This N may activate formic acid by the formation of an adduct (>NH+HCOO−) followed by its dehydrogenation on the adjacent Ru clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call