Abstract
AbstractTricarboxylic acids are molecules of interest for the synthesis of highly cross‐linked polymers, for instance, for the curing of epoxy resins. Herein, a synthesis route to a novel high oleic sunflower oil based triacid is described by applying a ruthenium catalyzed oxidative cleavage of its double bonds. A statistical concept is devised for the prediction of the yields of mono‐, di‐, and trifunctional derivatives that can be formed from high oleic sunflower oil, depending on the overall conversion of double bonds into this functional group and the overall oleic acid content of the used oil. This concept proved to be highly useful for the explanation of seemingly moderate triacid yields, which are inherently dependent on the unsaturated fatty acid content of the used oil. All obtained sunflower oil based polyacids are fully analyzed by attenuated total reflection infrared spectroscopy (ATR‐IR), electrospray ionization mass spectrometry (ESI‐MS), 1H, 13C, and quantitative 31P nuclear magnetic resonance (NMR) spectroscopy. In addition, a more sustainable purification procedure is developed to obtain a polymerizable mixture of polyacids containing more than 2.0 carboxylic acids per molecule in average.Practical applications: Tricarboxylic acids are valuable monomers for the synthesis of cross‐linked polymers. The herein reported procedure represents a hitherto unknown synthesis route towards a new triacid and polyacid mixture directly from high oleic sunflower oil.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.