Abstract

The objective of the study was to determine the effects of dietary fat source on duodenal flow, apparent absorption, and milk fat incorporation of trans-C18:1 fatty acids. Four ruminally and duodenally cannulated multiparous Holsteins cows in mid to late lactation were fed a basal diet containing 36% corn silage, 24% alfalfa haylage, and 40% concentrate (dry matter basis). Diets contained 0% supplemental fat (control diet), 3.7% high oleic sunflower oil, 3.7% high linoleic sunflower oil, or 3.7% partially hydrogenated vegetable shortening; treatments were administered in a 4×4 Latin square design with 3-wk experimental periods. The flow of trans-C18:1 to the duodenum was higher for cows fed diets supplemented with fat than for cows fed the control diet (283 vs. 64 g/d). Incomplete biohydrogenation accounted for the increased flow of trans-C18:1 to the duodenum in cows fed diets containing high oleic and high linoleic sunflower oil. Increased flow of trans-C18:1 in cows fed the diet containing partially hydrogenated vegetable shortening most likely originated from the trans-C18:1 in the diet. Milk fat percentages were 3.48, 3.07, 3.18, and 3.38% for cows fed the control diet and diets containing high oleic sunflower oil, high linoleic sunflower oil, and vegetable shortening, respectively. Milk trans-C18:1 increased from 2.9 to 11.2% of the total fatty acids for cows fed the control diet and the diets supplemented with fat, respectively. Milk trans-C18:1 were equal across all diets supplemented with fat. Ruminal and total tract digestion of organic matter, neutral detergent fiber, and N did not change with fat supplementation. Results showed that trans-C18:1 is increased in the milk of cows with reduced milk fat; however, excessive amounts of trans-C18:1 in milk do not necessarily correspond directly to milk fat depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call