Abstract

This paper presents a combined experimental and numerical effort to study solitary wave runup and rundown on beaches. Both nonbreaking and breaking solitary waves are investigated. A two-dimensional numerical model that solves both mean flow and turbulence is employed in this study. For the nonbreaking solitary wave on a steep slope, numerical results of the present model are verified by experimental data and numerical results obtained from the boundary integral equation method model, in terms of both velocity distribution and free surface profiles. The characteristics of flow patterns during runup and rundown phases are discussed. The vertical variations of the horizontal velocity component are large at some instances, implying that the shallow water approximation may be inaccurate even for the nonbreaking wave runup and rundown. For the breaking solitary wave on a mild slope, numerical results of the present model are compared with experimental data for free surface displacements. The present model is found to be more accurate than the depth-averaged equations models. Using this numerical model, the mean velocity field and turbulence distribution under the breaking wave are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.