Abstract

The present study is devoted to discrepancies between experimental and theoretical runup heights on an inclined plane, which have occasionally been reported in the literature. In a new study on solitary wave-runup on moderately steep slopes, in a wave tank with 20 cm water depth, detailed observations are made for the shoreline motion and velocity profiles during runup. The waves are not breaking during runup, but they do break during the subsequent draw-down. Both capillary effects and viscous boundary layers are detected. In the investigated cases the onshore flow is close to the transitional regime between laminar and turbulent boundary layers. The flow behaviour depends on the amplitude of the incident wave and the location on the beach. Stable laminar flow, fluctuations (Tollmien-Schlichting waves), and formation of vortices are all observed. Comparison with numerical simulations showed that the experimental runup heights were markedly smaller than predictions from inviscid theory. The observed and computed runup heights are discussed in the context of preexisting theory and experiments. Similar deviations are apparent there, but have often been overlooked or given improper physical explanations. Guided by the absence of turbulence and irregular flow features in parts of the experiments we apply laminar boundary layer theory to the inundation flow. Outer flows from potential flow models are inserted in a nonlinear, numerical boundary layer model. Even though the boundary layer model is invalid near the moving the shoreline, the computed velocity profiles are found to compare well with experiments elsewhere, until instabilities are observed in the measurements. Analytical, linear boundary layer solutions are also derived both for an idealized swash zone motion and a polynomial representation of the time dependence of the outer flow. Due to lacking experimental or theoretical descriptions of the contact point dynamics no two-way coupling of the boundary layer model and the inviscid runup models is attempted. Instead, the effect of the boundary layer on the maximum runup is estimated through integrated losses of onshore volume transport and found to be consistent with the differences between inviscid theory and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call