Abstract

Polyunsaturated fatty acids (PUFAs) are important dietary components that mammals cannot synthesize de novo. Beneficial effects of PUFAs, in particular of the n-3 class, for certain aspects of animal and human health (e.g., cardiovascular function) are well known. Several observations suggest, however, that PUFAs may also affect the performance of skeletal muscles in vertebrates. For instance, it has been shown that experimentally n-6 PUFA-enriched diets increase the maximum swimming speed in salmon. Also, we recently found that the proportion of PUFAs in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus), are very high compared to other mammals. Therefore, we predicted that locomotor performance, namely running speed, should be associated with differences in muscle fatty acid profiles. To test this hypothesis, we determined phospholipid fatty acid profiles in skeletal muscles of 36 mammalian species ranging from shrews to elephants. We found that there is indeed a general positive, surprisingly strong relation between the n-6 PUFAs content in muscle phospholipids and maximum running speed of mammals. This finding suggests that muscle fatty acid composition directly affects a highly fitness-relevant trait, which may be decisive for the ability of animals to escape from predators or catch prey.

Highlights

  • Comparative studies on locomotor performance and maximum running speed (MRS) in mammals have mostly concentrated on biomechanical models

  • We recently found that the proportions of Polyunsaturated fatty acids (PUFAs) in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus), are very high compared to other mammals [7].we hypothesized that muscle phospholipid profiles may be functionally related to locomotor performance, and were interested to see if there is a relation between either total PUFA content, any of the PUFA subclasses, or a particular fatty acid, and locomotor function as measured by running speed

  • After adjusting for this body size effect we found that MRS increased significantly with the proportion of total muscle phospholipid PUFAs (Table 1)

Read more

Summary

Introduction

Comparative studies on locomotor performance and maximum running speed (MRS) in mammals have mostly concentrated on biomechanical models. In Atlantic salmon, for instance, dietary fatty acid composition and resulting changes in muscle lipid composition significantly affected maximum swimming speed. We recently found that the proportions of PUFAs in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus), are very high compared to other mammals [7].we hypothesized that muscle phospholipid profiles may be functionally related to locomotor performance, and were interested to see if there is a relation between either total PUFA content, any of the PUFA subclasses, or a particular fatty acid, and locomotor function as measured by running speed

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.