Abstract

Embryonic or fetal loss in cattle is associated with problems that occur during oocyte maturation, early embryonic development, conceptus elongation, maternal recognition of pregnancy (MRP), and/or placental attachment and implantation. Many of these problems manifest as inadequate or asynchronous communication between the developing conceptus and endometrium, resulting in pregnancy failure. This review will provide an overview of how various conceptus-endometrial paracrine signaling systems control the fate of early pregnancy in cattle and other ruminants. We begin by summarizing the actions of interferon-tau, the classic MRP signal in ruminates, and then explore how other secretory factors derived from either the conceptus or endometrium influence establishment and maintenance of pregnancy. Insight into how the endometrium responds to male vs. female conceptuses or conceptuses produced by in vitro methods will also be described. Specific focus will be placed on describing how "omic" technologies and other cutting-edge techniques have assisted with identifying novel conceptus and/or endometrial factors and their functions. Recent findings indicate that the endometrial transcriptome and histotroph are altered by conceptus sex, quality, and origin, suggesting that the endometrium is a sensor of conceptus biochemistry. Although the endometrium has a certain level of flexibility in terms of conceptus-maternal interactions, this interplay is not sufficient to retain some pregnancies. However, new information inspires us to learn more and will help develop technologies that mitigate early embryonic loss and reproductive failure in ruminants and other animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.