Abstract

Simple SummaryRuminal microorganisms, especially bacteria, play a vital role in utilizing fibrous material in ruminants. The yak is a bovid on the Qinghai-Tibet Plateau that traditionally only grazes natural pasture all year. During lactation, energy intake of yaks is often well below requirements, and yaks lose body weight. Today, to mitigate body weight losses during lactation, suckling yaks are often offered supplementary feed. This study examined the effect of dietary supplements on rumen bacteria in lactating yak. The yaks were offered supplementary concentrate feed (C), rumen-protected Lys and Met (RPA), or both (RPA+C). The ratio of the relative abundance of Firmicutes to Bacteroidetes in RPA+C was greater than in the RPA group, while there was no difference between C and RPA+C. The intakes of supplements resulted in a number of alterations in the abundances of bacteria at the genus level. When supplemented with C, yaks increased the concentration of ruminal total volatile fatty acids (VFAs), acetate, and butyrate. These results demonstrate that supplementary feed: (1) alters the composition of rumen microbiota and VFAs of lactating yaks; and (2) can be used to manipulate the composition of rumen microbiota.Traditionally, yaks graze only natural pasture all year round without supplements. Forage intake of lactating yaks is below energy and protein requirements, even in the summer, and suckling yaks lose a substantial amount of significant body weight. Today, to mitigate the loss in body weight, supplementary feed is being offered to lactating yaks. However, the effects of supplementary feed on ruminal bacterial communities in lactating yaks is unknown. In the current study, we examined the effect of supplementary feed on ruminal microbiota, using 16S rRNA sequencing, and on volatile fatty acids (VFAs). Twenty-four lactating yaks of similar body weight (218 ± 19.5 kg) and grazing natural pasture were divided randomly into four groups and received different supplements: (1) rumen-protected amino acids (RPA); (2) concentrate feed (C); (3) RPA plus C (RPA+C); and (4) no supplements (control-CON). The concentrations of total VFAs, acetate, and butyrate were greater (p < 0.05) when supplemented with concentrate feed (C and RPA+C) than without concentrate feed (CON and RPA). Bacteroidetes (B) and Firmicutes (F) were the dominant ruminal bacterial phyla in all groups. The ratio of relative abundance of F:B in RPA+C was greater than in the RPA group, while there was no difference between CON and RPC (interaction, p = 0.026). At the genus level, the relative abundances of Absconditabacteriales_SR1, Bacteroidales-RF16-group, Bacteroidales_BS11_gut_ group, Prevotellaceae, and Rikenellaceae_RC9_gut_group were lesser (p < 0.05) with supplementary concentrate feed (C and RPA+C) than without concentrate feed (CON and RPA), whereas Butyrivibrio_2 and Pseudobutyrivibrio were greater (p < 0.05) with supplementary rumen-protected amino acids (RPA and RPA+C) than without rumen-protected amino acids (CON and C). These results demonstrate that supplementary feed: (1) alters the composition of rumen microbiota and concentrations of ruminal VFAs in lactating yaks; and (2) can be used to manipulate the composition of rumen microbiota.

Highlights

  • IntroductionIn China, mainly on the Qinghai-Tibetan Plateau (QTP) [1]

  • There are approximately 16 million yaks (Poephagus grunniens) worldwide, with 95%in China, mainly on the Qinghai-Tibetan Plateau (QTP) [1]

  • Supplementary rumen-protected amino acids had no effect on the diversity or the richness of the rumen bacterial community, but supplementary concentrate feed reduced the diversity

Read more

Summary

Introduction

In China, mainly on the Qinghai-Tibetan Plateau (QTP) [1] They are raised between 3000 and 5000 m above sea level and are well adapted to the harsh conditions of the QTP. Yaks provide meat [2] and milk [3,4] for food, dung for fuel, and wool for clothes [5], and they serve as a cultural symbol for Tibetans [6]. They are important in maintaining stability of the alpine ecosystem. To mitigate the losses in body weight and to improve meat and milk production, supplementary feed is being offered [3]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.