Abstract

Decision trees are examples of easily interpretable models whose predictive accuracy is normally low. In comparison, decision tree ensembles (DTEs) such as random forest (RF) exhibit high predictive accuracy while being regarded as black-box models. We propose three new rule extraction algorithms from DTEs. The RF[Formula: see text]DHC method, a hill climbing method with downhill moves (DHC), is used to search for a rule set that decreases the number of rules dramatically. In the RF[Formula: see text]SGL and RF[Formula: see text]MSGL methods, the sparse group lasso (SGL) method, and the multiclass SGL (MSGL) method are employed respectively to find a sparse weight vector corresponding to the rules generated by RF. Experimental results with 24 data sets show that the proposed methods outperform similar state-of-the-art methods, in terms of human comprehensibility, by greatly reducing the number of rules and limiting the number of antecedents in the retained rules, while preserving the same level of accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.