Abstract

In this paper, we study the discrete time renewal risk model, an extension to Gerber’s compound binomial model. Under the framework of this extension, we study the aggregate claim amount process and both finite-time and infinite-time ruin probabilities. For completeness, we derive an upper bound and an asymptotic expression for the infinite-time ruin probabilities in this risk model. Also, we demonstrate that the proposed extension can be used to approximate the continuous time renewal risk model (also known as the Sparre Andersen risk model) as Gerber’s compound binomial model has been proposed as a discrete-time version of the classical compound Poisson risk model. This allows us to derive both numerical upper and lower bounds for the infinite-time ruin probabilities defined in the continuous time risk model from their equivalents under the discrete time renewal risk model. Finally, the numerical algorithm proposed to compute infinite-time ruin probabilities in the discrete time renewal risk model is also applied in some of its extensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.