Abstract
Rubisco is responsible for net carbon dioxide fixation. Due to the high concentration of oxygen in the atmosphere and the relatively low concentration of carbon dioxide, Rubisco “misfires” frequently, splitting a molecule of ribulose bisphosphate rather than adding carbon to it. Evolution has worked to minimize this tendency, but the strategies have been varied, from slight changes in kinetic properties to wholesale re-organization of leaf anatomy. Rubisco consists of two types of subunits in higher plants, green algae, and certain cyanobacteria. The large (L) subunit is encoded in chloroplast DNA and the small (S) subunit in the nucleus. The discovery that Rubisco is encoded by genes in both the chloroplast and the nucleus of higher plants and green algae has motivated considerable research on the biogenesis and biochemistry of Rubisco. This article describes the role of my laboratory in the study of the assembly mechanism of this important enzyme in higher plants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have