Abstract

cDNA and the corresponding genomic DNA region encoding Rubisco activase were isolated from the unicellular green alga Chlorococcum littorale. The deduced amino acid sequence encoded by the cDNA was 403 amino acids long and exhibited important homology with those of other known Rubisco activases. Its N-terminal sequence was similar to the chloroplastic transit peptides in Chlamydomonas reinhardtii. The mature protein had a predicted molecular mass of 42 kDa. Five introns were located inside the genomic gene encoding Rubisco activase (rca). Genomic Southern blots indicated that two copies of the rca gene were present in the genome of C. littorale. The level of rca messenger RNA increased when cells of C. littorale were subjected to high-CO2 stress (i.e. grown under at least 20% CO2). Hsp70 heat-shock protein was also induced under high-CO2 conditions and, as expected, was also induced at 35 degrees C. The rca gene, in contrast, was not induced at 35 degrees C, indicating that this gene was induced in response to the high CO2 concentration and not to general stress. A search of the promoter-binding proteins by a gel retardation assay showed that, under the high-CO2 conditions, a protein(s) which was probably an activator of the rca transcription was synthesized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.