Abstract

The catalytic transformation of the biomass platform compound levulinic acid (LA) to γ-valerolactone (GVL) is a vital reaction to produce related renewable chemicals and fuels. Developing stable catalysts with highly dispersed and accessible ultrafine metal nanoparticle (NP) active sites for the hydrogenation of LA under solvent-free conditions is still a major challenge. Herein, a versatile nano-emulsion self-assembly method was employed to fabricate N-doped carbon nanospheres with a high specific surface area and hierarchically porous structure. Ultrafine Ru NPs were successfully anchored on the hierarchal porous N-doped carbon nanospheres (HPNC) with high dispersion. The obtained Ru/HPNC catalyst exhibited excellent catalytic performance for LA hydrogenation to GVL under solvent-free conditions with outstanding reusability. In contrast, Ru NPs embedded in other supports (including activated carbon and carbon nanotubes) were observed to be less effective under the same reaction conditions. The superior catalytic performance of the Ru/HPNC catalyst is due to the hierarchically porous catalyst structure, and accessible ultrafine Ru active sites which can promote the activation of CO bonds and H2 absorption during the catalytic process. The reaction pathway of LA hydrogenation to GVL is clearly researched by theoretical calculations. Thus, the current work provides a facile strategy for the synthesis of highly dispersed ultrafine metal NP-based catalysts for an important biomass transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call