Abstract
The physical and electrical characteristics of MgO (medium layer) and Pt (sensor material) thin films deposited by a reactive RF sputtering method and a magnetron sputtering method, respectively, were analyzed as a function of the annealing temperature and time by using a four-point probe, SEM, and XRD. After being annealed at 1000°C for 2h, the MgO layer showed good adhesive properties on both layers (Pt and SiO2 layers) without any chemical reactions, and the surface resistivity and the resistivity of the Pt thin film were 0.1288Ω/□ and 12.88μΩcm, respectively. Pt resistance patterns were made on MgO/SiO2/Si substrates by the lift-off method, and Pt resistance thermometer devices (RTDs) for micro-thermal sensor applications were fabricated by using Pt-wire, Pt-paste, and spin-on-glass (SOG). From the Pt RTD samples having a Pt thin film thickness of 1.0μm, we obtained a temperature coefficient of resistor (TCR) value of 3927ppm/°C, which is close to the Pt bulk value, and the ratio variation of the resistance value was highly linear in the temperature range of 25–400°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.