Abstract

Traditional denoising methods establish mathematical models by employing different priors, which can achieve preferable results but they are usually time-consuming and their outputs are not adaptive on regularization parameters. While the success of end-to-end deep learning denoising strategies depends on a large amount of data and lacks a theoretical interpretability. In order to address the above problems, this paper proposes a novel image denoising method, namely Residual Swin Transformer Cascade (RSTC), based on Taylor expansion. The key procedures of our RSTC are specified as follows: Firstly, we discuss the relationship between image denoising model and Taylor expansion, as well as its adjacent derivative parts. Secondly, we use a lightweight deformable convolutional neural network to estimate the basic layer of Taylor expansion and a residual network where swin transformer block is selected as a backbone for pursuing the solution of the derivative layer. Finally, the results of the two networks contribute to the approximation solution of Taylor expansion. In the experiments, we firstly test and discuss the selection of network parameters to verify its effectiveness. Then, we compare it with existing advanced methods in terms of visualization and quantification, and the results show that our method has a powerful generalization ability and performs better than state-of-the-art denoising methods on performance improvement and structure preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.