Abstract

Solutions for indoor tracking and localization have become more critical with recent advancement in context and location-aware technologies. The accuracy of explicit positioning sensors such as global positioning system (GPS) is often limited for indoor environments. In this paper, we evaluate the feasibility of building an indoor location tracking system that is cost effective for large scale deployments, can operate over existing Wi-Fi networks, and can provide flexibility to accommodate new sensor observations as they become available. This paper proposes a sigma-point Kalman smoother (SPKS)-based location and tracking algorithm as a superior alternative for indoor positioning. The proposed SPKS fuses a dynamic model of human walking with a number of low-cost sensor observations to track 2-D position and velocity. Available sensors include Wi-Fi received signal strength indication (RSSI), binary infra-red (IR) motion sensors, and binary foot-switches. Wi-Fi signal strength is measured using a receiver tag developed by Ekahau, Inc. The performance of the proposed algorithm is compared with a commercially available positioning engine, also developed by Ekahau, Inc. The superior accuracy of our approach over a number of trials is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.