Abstract
Arable soil contamination with heavy metals (HMs) poses a great potential threat to vegetable crops and human health. Radish (Raphanus sativus L.), an economical and popular root vegetable crop, is easily absorbed HMs by its taproot. Although the Natural Resistance-Associated Macrophage Proteins (NRAMPs) were participated in transporting a number of HMs in plants, whether and how the NRAMP genes involved in cadmium (Cd) uptake and transport remains elusive in radish. In this study, a total of nine RsNRAMP gene members were identified, which were classified into three subgroups and dispersed on six radish chromosomes. Three RsNRAMPs (RsNRAMP3, RsNRAMP4 and RsNRAMP5) displayed high expression in the vascular cambium, and they exhibited obviously Cd-induced expression, among which the expression of RsNRAMP4 and RsNRAMP5 reached to the highest level at 24h. Moreover, the RsNRAMP5 was localized to the plasma membrane and its promoter activity was dramatically induced by Cd exposure. Heterologous expression analysis indicated that over-expression of RsNRAMP5 significantly promoted the uptake of Cd, lead (Pb), iron (Fe) and manganese (Mn) in yeast cells. In addition, the transient over-expression of RsNRAMP5 promoted Cd uptake and enhanced ROS (reactive oxygen species) accumulation in radish cotyledons. These findings would expedite unraveling the molecular mechanism underlying RsNRAMP5-mediated Cd uptake and transport in radish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.