Abstract

Encryption involves every aspect of working with and learning about codes. Over the last 40 years, it has grown in prominence to become a prominent scholarly discipline. Because most interactions now take place online, people require secure means of transmitting sensitive information. Several modern cryptosystems rely on public keys as a crucial component of their architecture. The major purpose of this research is to improve the speed and security of the RSA algorithm. By employing Linear Congruential Generator (LCG) random standards for randomly generating a list of large primes; and by employing other selected algorithms, such as the Chinese Remainder Theorem (CRT) in decryption, exponent selection conditions, the Fast Exponentiation Algorithm for encryption, and finally, a comparison of the enhanced RSA versus the normal RSA algorithm that shows an improvement will be provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.