Abstract
Machine learning (ML)-based compact model (CM) provide an alternative way in contrast to physics-based CMs. The advantages of ML CMs include the process-aware capability, expandability, improved behavioral model for a circuit block, and usability for emerging devices. On the other hand, while ML is on the rise, device physics can provide many guidelines in constructing ML CMs. Here, we propose a physics architecture in ML CMs for resistive random access memory (RRAM). The results show that the physics-assisted architecture enables simpler ML models in reference to our previous work of long short-term memory (LSTM)-based RRAM CMs. We found that the discrete state variable with classification is the best model to describe the RRAM set/reset scenario in multistep prediction problems. For the discrete and continuous state variables, the root mean square error (RMSE) on test data is 0.000125 and 0.000119, respectively. In addition, we demonstrate that the transient behavior of set/reset changes can be easily incorporated into the proposed model. Finally, the Verilog-A and HSPICE on a 1T1R cell have also been shown to prove the model feasibility. We suggest that the uniform framework with hybridization in physics and ML should be the most efficient way in future compact device modeling. The code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/albertlin11/RRAMunif</uri> .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have