Abstract

Polaritonic states arise when a bright optical transition of a molecular ensemble is resonantly matched to an optical cavity mode frequency. Here, we lay the groundwork to study the behavior of polaritons in clean, isolated systems by establishing a new platform for vibrational strong coupling in gas-phase molecules. We access the strong coupling regime in an intracavity cryogenic buffer gas cell optimized for the preparation of simultaneously cold and dense ensembles and report a proof-of-principle demonstration in gas-phase methane. We strongly cavity-couple individual rovibrational transitions and probe a range of coupling strengths and detunings. We reproduce our findings with classical cavity transmission simulations in the presence of strong intracavity absorbers. This infrastructure will provide a new testbed for benchmark studies of cavity-altered chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call