Abstract

AbstractConsider a set of trips where each trip is specified a priori by a place of origin, a destination, a duration, a cost, and a time interval within which the trip must begin. The trips may include visits to one or more specific points. Our problem is to determine the number of vehicles required, together with their routes and schedules, so that each trip begins within its given time interval, while the fixed costs related to the number of vehicles, and the travel costs between trips, are minimized. The problem is a generalization of the m‐traveling salesman problem. We use column generation on a set partitioning problem solved by simplex and branch‐and‐bound; columns are generated by a shortest path algorithm with time windows on the nodes. Numerical results for several school bus transportation problems with up to 151 trips are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.