Abstract
ABSTRACTIn this work, a graph partitioning problem in a fixed number of connected components is considered. Given an undirected graph with costs on the edges, the problem consists of partitioning the set of nodes into a fixed number of subsets with minimum size, where each subset induces a connected subgraph with minimal edge cost. The problem naturally surges in applications where connectivity is essential, such as cluster detection in social networks, political districting, sports team realignment, and energy distribution. Mixed Integer Programming formulations together with a variety of valid inequalities are demonstrated and computationally tested. An assisted column generation approach by spectral clustering is also proposed for this problem with additional valid inequalities. Finally, the methods are tested for several simulated instances, and computational results are discussed. Overall, the proposed column generation technique enhanced by spectral clustering offers a promising approach to solve clustering and partitioning problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.