Abstract

AbstractInterest in underwater acoustic sensor networks (UW‐ASNs) has rapidly increased with the desire to control the large portion of the world covered by oceans. Energy efficiency is one of the major concerns in UW‐ASNs due to the limited energy budget of the underwater sensor nodes. In this paper, we tackle the problem of energy holes in UW‐ASNs while taking into consideration the unique characteristics of the underwater channel. We prove that we can evenly distribute the transmission load among sensor nodes provided that sensors adjust their communication range when they send or forward the periodically generated data. In particular, we propose a balanced routing strategy along with the associated deployment pattern that meticulously determines the load weight for each possible next hop that leads to fair energy consumption among all underwater sensors. Consequently, the energy holes problem is overcome, and hence, the network lifetime is improved. To the best of our knowledge, this is the first work that addresses the energy hole problem in UW‐ASNs. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.