Abstract
Mobile IP is the basic solution to provide host mobility, whereas network mobility refers to the concept of collective mobility of a set of nodes. In the simplest scenario, a mobile network moves as a single unit with one mobile router (MR) that connects it to the global Internet. Also, multiple mobile networks can be nested in a hierarchical form, e.g., a wireless personal area network (PAN) in a vehicular network. In a nested mobile network, multiple MRs form a tree hierarchy in which the root MR is called the top-level mobile router (TLMR). Nested mobile networks exhibit the pinball routing problem, which becomes worse in proportion to the number of nested levels in the hierarchy. To solve this problem, we propose a routing optimization scheme using a tree information option (ROTIO) that extends the NEMO basic support protocol. In the ROTIO scheme, each MR in the nested mobile network sends two binding updates (BUs): one to its home agent and the other to the TLMR. The former BU contains the TLMR's home address, while the latter contains routing information between the issuing MR and the TLMR. This alleviates the pinball routing problem significantly. Now, a packet from a correspondent node only needs to visit two transit nodes (the home agents of the MR and the TLMR), regardless of the degree of nesting. Moreover, the ROTIO scheme provides location privacy and mobility transparency. We also extend ROTIO to perform routing between two mobile network nodes inside the same nested mobile network more efficiently and to substantially reduce the disruption when a mobile network hands off.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have