Abstract

HypothesisTo mechanically stimulate the round window (RW) membrane, an actuator with an interface coupler (IC) has the potential to improve sound transmission to the cochlea as compared to the most used RW stimulation device implanted today. If a proof-of-concept IC prototype shows promise as compared the most common method for RW stimulation, there is potential that future design development of an IC will be worthwhile. BackgroundA variety of hearing pathologies resulting in mixed and conductive hearing loss can be addressed by mechanically stimulating the RW to transmit sound to the cochlea. The most common method for RW stimulation is with the floating mass transducer (FMT, Med-El). However, the FMT suffers poor sound transmission and unreliable device positioning. The dynamic range and bandwidth of the FMT as a RW stimulator is limited because the entire FMT needs freedom to vibrate. Thus the FMT has difficulty overcoming its own inertia and it cannot be stabilized in a manner that may limit its motion. Here we test an idea of using a generic actuator that vibrates on one side while stationary and held stable on the other (unlike the FMT), and coupling the actuator vibration to the RW membrane with a proof-of-concept IC designed to safely transmit sound to the cochlea. We determine if this proof-of-concept IC can perform as well or better than the FMT in one specimen. If so, further developments of the IC would be worthwhile. MethodsRW sound transmission comparison was made between an ideally implanted FMT and a proof-of-concept IC prototype driven by a piezoelectric stack actuator with vibrating tip in a fresh human temporal bone. Velocities of stapes, FMT, and IC actuator were measured with laser Doppler vibrometry to determine bandwidth, linearity, and dynamic range of cochlear sound transmission. ResultsStimulation with proof-of-concept prototype of the IC provided increased sound transmission, more linear output for larger dynamic range, and wider frequency range as compared to the FMT. This experiment demonstrates the potential of the IC concept to improve performance, and that it merits further development. However, it was challenging to stabilize the coupling between an external actuator and the proof-of-concept IC prototype. Thus, although we were successful in showing that this IC concept has promise, major design improvements and developments are required in the future. ConclusionsWe demonstrated that the proof-of-concept IC prototype driven with a tip connected to a piezoelectric stack actuator can stimulate the RW membrane with improved acoustic performance as compared to the FMT in one specimen. This study demonstrated proof of concept: that the idea of an IC for sound transmission to the cochlea through the RW has potential, and that it would be worthwhile to pursue the IC idea with further developments. This idea has the potential to provide robust sound transmission to the cochlea via the RW while preventing possible trauma to the cochlea. We also learned that critical design improvements are necessary because coupling the generic external actuator to the IC was challenging. A possible future IC design is to integrate a piezoelectric actuator permanently to the IC, allowing only the soft balloon membrane of the IC to vibrate the RW while the rest of the exterior housing of the combined IC (with actuator) would not vibrate and would be stabilized in a fixed manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.