Abstract

Recently, a round-robin differential phase-shift (RRDPS) protocol was proposed [Nature 509, 475 (2014)], in which the amount of leakage is bounded without monitoring the signal disturbance. Introducing states of the phase-encoded Bennett–Brassard 1984 protocol (PE-BB84) to the RRDPS, this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift (RRDQPS) quantum key distribution. Regarding a train of many pulses as a single packet, the sender modulates the phase of each pulse by one of {0, π/2, π, 3π/2}, then the receiver measures each packet with a Mach–Zehnder interferometer having a phase basis of 0 or π/2. The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84, so it has great compatibility with the current quantum system. Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack. Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.