Abstract

The concept of roughness-induced crack closure is utilized to explain the role of prior austenite grain size and pearlite interlamellar spacing on near-threshold fatigue crack propagation in fully pearlitic eutectoid steel tested at low and high stress ratio in lab air and purified helium. It is shown that at low load ratios, near-threshold growth rates are significantly reduced for coarse-grained microstructures, compared to fine-grained at constant yield strength, due to roughness-induced crack closure. Using roughness-profile microscopy, it was found that fracture surface roughness near threshold scaled with grain size and inversely with yield strength, macroscopic roughnesses at threshold being considerably larger than the conventionally calculated cyclic crack tip opening displacement. Auger analysis of near-threshold corrosion products showed it to be iron oxide; the oxide thickness was seen to be decreased by increased stress ratio. The significance of this model to near-threshold fatigue crack growth behavior, in terms of load ratio, microstructure, and environment is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call