Abstract
It is generally accepted that the fatigue or endurance strength of planar slip materials, such as steel and brass, is increased by refining the grain size, whereas in wavy slip materials, such as pure copper and pure aluminum, the fatigue strength is unaffected. However, there is little similar evidence of an effect of grain size on fatigue crack propagation. In both wavy and planar slip metals, growth rates appear independent of grain size. For example, variations in grain size from 10 to 200{micro}m in 70/30 brass (6), and from 45 to 480{micro}m in austenitic stainless steel produce no measurable change in fatigue crack propagation rates over a range of growth rates from 10{sup -5} to 10{sup -2} mm/cycle. Recently, however, there have been indications in the literature that grain size may indeed influence crack propagation behavior at growth rates less than 10{sup -5} to 10{sup -6} mm/cycle approaching the threshold for crack propagation, {Delta}K{sub 0}. Robinson and Beevers report an order of magnitude decrease in near-threshold growth rates in {alpha}-titanium after coarsening the grain size from 20 to 200{micro}m. Similar effects have been seen in Ti-6Al-4V. Furthermore, Masounave and BaIlon have observed a marked increase in threshold {Delta}K{sub 0} valuesmore » in a range of low strength steels by increasing ferrite grain size. In all the above studies however, no attempt was made to control strength; and the effect of coarsening the grain size may well have been caused by a concurrent decrease in material strength, particularly since it is known that, in steels at least, near-threshold fatigue crack growth is markedly decreased by reducing the yield strength. A comparison at constant yield strength between coarse and fine-grained materials has been made in ultra-high strength steel (300-M) where it was found that, on enlarging the (prior austenite) grain size from 20 to l60{micro}m, a small reduction in near-threshold propagation rates below 10{sup -4} to 10{sup -5} mm/cycle resulted with no change in the threshold {Delta}K{sub 0}. The object of the present note is to examine further the effect of prior austenite grain size on near-threshold fatigue crack growth behavior in a high strength steel (Fe-Cr-C) where grain size can be varied considerably without significant change in monotonic and cyclic strength.« less
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.