Abstract

Stall inception patterns at three stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the stall inception from a rotating instability. The rotating instability is confirmed near stall condition at the high stagger-angle settings for the highly loaded rotor blades as same as that for the moderate loaded rotor blades. The rotating instability is induced by an interaction between the incoming flow, the reversed tip-leakage flow, and the end-wall backflow from the trailing edge. At the high stagger-angle settings for the rotor blades, the interface between the incoming flow and the reversed tip leakage flow becomes parallel to the leading edge plane near and at the stall condition. Moreover, the tip leakage flow spills from the leading edge of the adjacent blade at the stall condition. The changes in the end-wall flow at the rotor tip are consistent with the criteria for the spike initiation suggested by Vo et al. and Hah et al. However, the short length-scale stall cell is not observed at the high stagger-angle settings. The tip-leakage vortex breakdown is confirmed at the three stagger-angle settings. The end-wall blockage induced by the tip-leakage vortex breakdown influences the development of the stall cell. Moreover, the development of the three-dimensional separation vortex induced by the tip-leakage vortex breakdown seems to be one of the criteria for spike-type stall inception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call