Abstract

End wall flow fields at the two stagger-angle settings for the rotor blades in the low-speed axial-flow fan are experimentally and numerically investigated to elucidate the mechanism of stall inception. Rotating instability is confirmed near the maximum pressure-rise point at both design and large stagger-angle settings. This instability is induced by the interaction between the incoming flow, tip leakage flow, and backflow from the trailing edge. The stall-inception pattern, however, differs at the two stagger-angle settings. The stall inception from a spike is observed at the design stagger-angle setting, and the stall inception without the spike and modal disturbance is observed at the large stagger-angle setting. The rotating instability seems to influence the formation of stall cell at the large stagger-angle setting. Tip-leakage vortex breakdown occurs at both design and large stagger angle settings. This breakdown induces the three-dimensional separation on the suction surface of the rotor blade at the tip. Three-dimensional separation at the design stagger-angle setting is stronger than that at the large stagger-angle setting. The strong separation grows into a three-dimensional separation vortex, which crosses the blade passage near the trailing edge. This separation vortex seems to be one of the conditions for spike initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call