Abstract

One of the key considerations in high pressure (HP) turbine design is the heat load experienced by rotor blades. The impact of turbine inlet non-uniformities on the blades in the form of combined temperature and velocity traverses, typical for a lean burn combustor exit, has rarely been studied. For general HP turbine aerothermal designs, it is also of interest to understand how the behavior of a lean burn combustor traverses (hot streak and swirl) might contrast with those for rich burn combustion (largely hot streak only). In the present work, a computational study has been carried out on the aerothermal performance of a HP turbine stage under non-uniform temperature and velocity inlet profiles. The analyses are primarily conducted for two combined hot streak and swirl inlets, with opposite swirl directions. In addition, comparisons are made against a hot streak only case and a uniform inlet. The effects of three NGV shape configurations are investigated; namely, straight, compound lean (CL) and reverse compound lean (RCL). The present results show that there is a qualitative change in the roles played by heat transfer coefficient (HTC) and fluid driving (‘adiabatic wall’) temperature, Taw. It has been shown that the blade heat load distribution for a uniform inlet is dominated by HTC, whilst for a hot streak only case it is wholly influenced by Taw. However, in contrast to the hot streak only case, the case with a combined hot streak and swirl shows a role reversal with the HTC being dominant in determining the heat load. Additionally, it is seen that the swirling flow radially redistributes the hot fluid within the NGV passage considerably, leading to a much ‘flatter’ rotor inlet temperature profile compared to its hot streak only counterpart. Further, the rotor heat transfer characteristics for the cases with the combined traverses are shown to be strongly dependent on the NGV shaping and the inlet swirl direction, indicating the potential for future design space exploration. The present findings underline the need to clearly define relevant combustor exit temperature and velocity profiles when designing and optimizing NGVs for HP turbine aerothermal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.