Abstract

PurposeNumerical simulations were carried out for two cooling schemes, a circular hole and a louver cooling scheme, at the leading edge of a rotor blade in a complete turbine stage.Design/methodology/approachTwo holes were positioned at the leading edge of a rotating blade, one on the pressure side and the other on the suction side. The methodology was validated with a circular hole case. Numerical results of cooling effectiveness for three blowing ratios at three rotational speeds were successfully obtained. Both blowing ratio and rotating speed of the rotor affect the cooling effectiveness level.FindingsIt was shown that for the circular hole, the blowing ratio is the dominant factor at low blowing ratios and the rotational speed is the dominant factor at high blow ratios when jet is prone to lift off in determining the cooling effectiveness level. For the louver scheme, a higher rotational speed leads to a higher level of cooling effectiveness since jet liftoff is avoided.Originality/valueThere are only a few studies of film cooling on a rotational turbine blade and very few studies of film cooling at the leading edge of a rotating turbine blade in the open literature. The present work presents a challenging CFD case. The analysis of film cooling at the leading edge of an airfoil was presented, which sheds light on the physics of film cooling and should prove helpful to the cooling designs of turbine blades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.