Abstract

This paper reports the results of lattice Boltzmann simulations of the rotation behaviour of neutrally buoyant spheroidal particles in a three-dimensional Couette flow. We find several distinctive states depending on the Reynolds number range and particle shape. As the Reynolds number increases, rotation may change from one state to another. For a prolate spheroid, two rotation transitions are found. In the low Reynolds number range , the oblate spheroid still spins with a constant rate around its minor axis but there is a finite inclination angle between the minor axis and the vorticity vector. This angle increases as the Reynolds number increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.