Abstract
We study the rotational behaviour on minimal sets of torus homeomorphisms and show that the associated rotation sets can be any type of line segment as well as non-convex and even plane-separating continua. This shows that the restriction which hold for rotation sets on the whole torus are not valid on minimal sets. The proof uses a construction of rotational horseshoes by Kwapisz to transfer the problem to a symbolic level, where the desired rotational behaviour is implemented by means of suitable irregular Toeplitz sequences.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have