Abstract
Correspondence analysis (CA) is a statistical method for depicting the relationship between two categorical variables, and usually places an emphasis on graphical representations. In this study, we discuss a CA formulation based on canonical correlation analysis (CCA). In CCA-based formulation, the correlations within and between row/column categories in a reduced dimensional space can be expressed by canonical variables. However, in existing CCA-based formulations, only orthogonal rotation is permitted. Herein, we propose an alternative CCA-based formulation that permits oblique rotation. In the proposed formulation, the CA loss function can be defined as maximizing the generalized coefficient of determination, which is a measure of proximity between two variables. Simulation studies and real data examples are presented in order to demonstrate the benefits of the proposed formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.